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"An LM is a system for haphazardly stitching together
sequences of linguistic forms [...] but without any reference to
meaning: a stochastic parrot.”

Bender et al. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? FAccT 2021.
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cannot in principle lead to learning of meaning.”

"We let GPT-2 complete the simple arithmetic problem Three plus five equals. [...] this
problem is beyond the current capability of GPT-2, and, we would argue, any pure LM."

Bender and Koller. Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data. ACL 2020.
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Limitations of LM Capabilities

“The language modeling task, because it only uses form as training data,
cannot in principle lead to learning of meaning.”

‘It is possible that large text-only models learn a sufficiently rich conceptual
structure that could allow them to be grounded in a data-efficient way.”

LMs can and do leverage structured relationships in pertaining data to

et al.
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. Task abilities (functional competence)

Mahowald et al. Dissociating language and thought in large language models: a cognitive perspective. 2023.



Types of LM Capabilities

. Language knowledge (formal competence)
. LMs do not represent ambiguities in language well

. Task abilities (functional competence)

Mahowald et al. Dissociating language and thought in large language models: a cognitive perspective. 2023.



Types of LM Capabilities

. Language knowledge (formal competence)
. LMs do not represent ambiguities in language well
. Task abilities (functional competence)

. LMs fail at simple variants of common tasks

Mahowald et al. Dissociating language and thought in large language models: a cognitive perspective. 2023.
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Operationalizing Ambiguity

A tool for visualising parse trees produced by DELPH-IN grammars. Targets the developmental API. The source code can be found on
GitHub.

Natural language processing is fun. Parse

Example sentence: Abrams knew that it rained.

Grammar: | ERG 2018 (UW) v |Results: [500 v| Tree [J; MRS &; DMRS (J;

Showing 53 of 53 analyses.

Natural language processing is fun.

https://delph-in.github.io/delphin-viz/demo
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Operationalizing Ambiguity

Premise Alisa saw the dog bowl.

Disambicuations Alisa saw Alisa saw
5 the bowl for dogs. { thedog going bowling.
Labels Neutral = Entail

Hypothesis he dog can bowl.

11
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AmbiEnt Collection

« Manual curation (142 ex.): linguistics textbooks, existing datasets, etc.

. Automatic generation + careful validation (1503 ex.)

|ICL examples —¥ @ Alisa saw the dog bowl. The dog can bowl.
Entail Neutral
. Alisa saw the dog going bowling. Alisa saw the dog's bowl.
g Neutral
Py Entail Neutral

L Alisa saw the dog going bowling. Alisa saw the bowl for dogs.
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LM Evaluation

1. Can LMs generate disambiguations?
2. Can LMs recognize potential disambiguations?

2. Can LMs model continuations reflecting different interpretations?

« Evaluated models
. Base LMs: LLaMa-65B, GPT-3 (davinci)

. Instruction-following/aligned LMs: Flan-T5-xxl, InstructGPT, GPT-3.5, GPT-4
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1.
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1. Generating disambiguations

Demonstrations X 4

Context: He is on track to complete his PhD in three years.
Claim: He will spend a total of three years completing his PhD.
Given the context alone, is this claim true, false, or inconclusive?

We don't know, because the context can be interpreted in many different ways:
1. He is on track to complete his PhD in three more years from now. Then the claim is inconclusive.
2. He is on track to complete his PhD in three years from when he started. Then the claim is true.

Context: Alisa saw the dog bowl.
Claim: The dog can bowl.
Given the context alone, is this claim true, false, or inconclusive?

We don't know, because the context can be interpreted in many different ways:
1. Alisa saw the bowl for dogs. Then the claim is inconclusive.
2. Alisa saw the dog going bowling. Then the claim is true.
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1. Generating disambiguations

Instruction

Demonstrations X 4

In each example, you will be given some context and a claim, where the correctness of the claim is affected
by some ambiguity in the context. Enumerate two or three interpretations of the context that lead to
different judgments about the claim.

Context: He is on track to complete his PhD in three years.
Claim: He will spend a total of three years completing his PhD.
Given the context alone, is this claim true, false, or inconclusive?

We don't know, because the context can be interpreted in many different ways:
1. He is on track to complete his PhD in three more years from now. Then the claim is inconclusive.
2. He is on track to complete his PhD in three years from when he started. Then the claim is true.

Context: Alisa saw the dog bowl.
Claim: The dog can bowl.
Given the context alone, is this claim true, false, or inconclusive?

We don't know, because the context can be interpreted in many different ways:

1. Alisa saw the bowl for dogs. Then the claim is inconclusive.
2. Alisa saw the dog going bowling. Then the claim is true.

16
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Q: Alisa saw the dog bowl. This may mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This does not necessarily mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This cannot mean: The dog can bowl. True or False?
A: {True, False}
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2. Recognizing disambiguations

Q: Alisa saw the dog bowl. This may mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This does not necessarily mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This cannot mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This can only mean: The dog can bowl. True or False?
A: {True, False}

18
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3. Modeling continuations

. Intuition: continuations conditioned on a disambiguated sentence should be
reasonable continuations to the ambiguous sentence too

« KL(P(-|d) || P(-|a))should be “reasonably” small

. KL(P(-|d) || P(-|a)) < KL(P(-|d) || P(-|a))for some distractor d

d Alisa saw the dog going bowling. It beat all animals in the bowling alley.
a Alisa saw the dog bowl. w
Ci Alisa SaW the dOg gOing Cycling. JE——_ 3
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3. Modeling disambiguating continuations
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Summary

. Despite the importance of ambiguity in language, it is not represented well in
state-of-the-art LMs

. More interesting findings in paper
. Itis challenging to finetune LMs to recognize ambiguity
. Ambiguity partly explains annotator disagreement

. Ambiguity-aware models bear practical utility, e.g., to detect misleading
political claims
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The integral you're asking about is the Gaussian integral. Its value is:

So the result is /7.
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What is the sum of the following series? $\sum_{n=1}*{\infty} \frac{n*242"n}$

2

The sum of the series » . . % is 6.

n=1 on |

What is the result of the following integral? $\int_{-\infty}*{\infty} e*{-x*2} dx$

The integral you're asking about is the Gaussian integral. Its value is:

)

[ e @de = /7

o0

So the result is /7.

GPT-4 is so good at math!
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Linear-time algorithm
for substring finding?

Write the linear time KMP algorithm that finds a substring in a string using Python

Certainly! The Knuth-Morris-Pratt (KMP) algorithm is a linear time algorithm for substring

searching, which is very efficient because it never backtracks more than necessary.

Here's a Python implementation of the KMP algorithm:

python () Copy code

(pattern):

m = len(pattexrn)
pi = [0] * m
j =
i range(l, m):
j > pattern[i] != pattexrn[j]:
j = pilj-1]
pattern[i] == pattexrn[j]:
j +=
pili] = jJ
pi

(text, pattern):

n len(text)
m len(pattern)
pi = compute_prefix_function(pattern)
j =

range(n):

j > text[i] != pattern[j]:

j = pil3-1]
text[i] == pattern[j]:

j +=

text =
pattern =

print(kmp_search(text, pattern))

25



Write the linear time KMP algorithm that finds a substring in a string using Python

Certainly! The Knuth-Morris-Pratt (KMP) algorithm is a linear time algorithm for substring

searching, which is very efficient because it never backtracks more than necessary.

Here's a Python implementation of the KMP algorithm:

python (2] Copy code

(pattern):

m = len(pattexrn)
pi = [0] * m
j =
range(l, m):
j > pattern[i] != pattexrn[j]:
j = pilj-1]
pattern[i] == pattexrn[j]:
j +=
pil[i]l = 3
pi

Linear-time algorithm

[ ) ® n len(text)
for substring finding?
o pi = compute_prefix_function(pattern)
j = :
range(n):
j > text[i] != pattern[j]:
j = pil3-1]
text[i] == pattern[j]:

j +=

text =
pattern =

print(kmp_search(text, pattern))

GPT-4 can code so well!
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This is over-generalizing!

. In order to claim general abilities...

« We can't genera|i7e st from test instances ;\‘
Gaussian integral

Article Talk

. High variz

: From Wikipedia, the free encyclopedia .
. We can't ger 1V

This integral from statistics and physics is not to be confused with Gaussian quadrature, a method of numerica,

The Gaussian integral, also known as the Euler—Poisson integral, is the integral of the Gaussian function
. Data cont ,

f(xz) = e overthe entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral
IS

/ e_":2 dx = /7.

o0
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o o where the digits are "'012345678", what is 27+62? Let's think step by step.
Arithmetic
default counterfactual
X : OO
Base-10 Base-9
27+62= 389 100

Starting from the trailing digits of a and b, add them together.

ADD,,..(a. b) If greater than base, carry over.
paser Move on to the penultimate digit.
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Arithmetic

27+62=

You are a mathematician. Assuming that all numbers are in base-9
where the digits are "'012345678", what is 27+62? Let's think step by step.

default counterfactual
— —
o> >
Base-10 Base-9
39 100
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. | can't do base-9 arithmetic as well either

. Under a fixed time budget, probably, but what if given unlimited time?

. Why calibrate using human performance?
. |s a perfect yet base-10-specific implementation bad?

. Not necessarily, but it represents a lack of generalizability

. We don't actually know if the LM implements perfect base-10 arithmetic!
« Do we care about base-9 arithmetic?

. Itis certainly useful sometimes

. More importantly, it is a test setting not confounded by memorization

22
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Coding: Execution

"By providing such hints to ChatGPT, its success rate can be
further increased, fixing 31 out of 40 bugs, outperforming
state-of-the-art.

Sobania et al. An Analysis of the Automatic Bug Fixing Performance of ChatGPT. ICSE 2023.
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Coding: Execution

"By providing such hints to ChatGPT, its success rate can be
further increased, fixing 31 out of 40 bugs, outperforming
state-of-the-art.

“"We also compare the PLMs against recent state-of-the-art
APR tools. Our study demonstrates that directly applying
state-of-the-art PLMs can already substantially outperform
all existing APR techniques on all our datasets.”

Sobania et al. An Analysis of the Automatic Bug Fixing Performance of ChatGPT. ICSE 2023.
Xia et al. Practical Program Repair in the Era of Large Pre-trained Language Models. 2022.
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Python ThonPy

0-based indexing 1-based indexing
sorted(
[ "ab" 4 "ba,' ] 4 d 144 dd 144 i 144 a4 144
key=lambda x: x[1], [“ba”, “ab”] [“ab”, “ba”]
)
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Drawing unicorns
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Music

Can you compose a short tune (say four to eight bars) using ABC notation?
There are many possible ways to compose a short tune in abc notation, but here is one example:

X:1

T:Example Tune

M:4/4

L:1/8

K:C

| :G2AB c2BA | G2AB c2c2 | edcB c2BA | G4-G2z2 :|
| :c2de f2ed | c2de f2f2 | g2fe d2cB | c4-c2z2 :|

This tune has two four-bar phrases, each repeated once, forming an A part and a B part. The key is C
major.

Can you describe the tune in musical terms?

Here is one possible description:

The tune starts with a rising arpeggio of the tonic chord (C major), followed by a descending scale that
returns to the tonic. This pattern is repeated, but the second time the scale continues to the higher
tonic note. The first phrase ends with a long tonic note.

The second phrase begins with a similar pattern, but using the subdominant chord (F major) instead of
the tonic. The second time, the scale continues to the higher subdominant note. The phrase ends with a
stepwise descent to the tonic, followed by a long tonic note.

The A part and the B part have a similar structure, but use different chords and ranges. The tune has a
simple and catchy melody, with a clear sense of tonality and rhythm.

Bubeck et al. Sparks of Artificial General Intelligence: Early experiments with GPT-4. 2023.



Music

I like part A, but maybe part B is just a bit too similar to part A, making the song repetitive. How
about beginning part B with a descending arpeggio instead of a rising one?

Sure, that would create some contrast and variation. Here is one possible way to do that:

X:1

T:Example Tune

M:4/4

L:1/8

K:C

| :G2AB c2BA | G2AB c2c2 | edcB c2BA | G4-G2z2 :|

| :£2ed c2BA | f2ed c2c2 | g2fe d2cB | c4-c2z2 :|

That’s much better. Now how about making this into a duet, can you add a second staff for this with a
bass accompanying the melody?

Bubeck et al. Sparks of Artificial General Intelligence: Early experiments with GPT-4. 2023.
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checkmate in_one

—4— Legal moves

0.6 =~ —— Correct mates
—4— Random mates

0.5 = —— Unrecognized mates
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Figure 16: Larger models are better at finding legal chess moves, but struggle to find checkmating
moves. (a) Example chess position from the checkmate_in_one task, corresponding to the input string

Srivastava et al. Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. 2023.
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Reasoning or Reciting?

« LMs possess some degree of reasoning abilities for many tasks

« Much of observed LM performance is from overfitting to (or reciting) the default
task variant

. Potentially direct memorization
. Over-estimates generalizability
. ICL doesn't fully bridge the gap

. But default performance is useful to measure progress

a
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. Tease apart instance memorization vs. overfitting to task variants

. Pinpoint how LMs implement each task

. How can we build models that are better task-general reasoners?
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