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“An LM is a system for haphazardly stitching together 
sequences of linguistic forms […] but without any reference to 

meaning: a stochastic parrot.”

Bender et al. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? FAccT 2021.
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“The language modeling task, because it only uses form as training data, 
cannot in principle lead to learning of meaning.”

Patel and Pavlick. Mapping Language Models to Grounded Conceptual Spaces. ICLR 2022.
Wu et al. Transparency Helps Reveal When Language Models Learn Meaning. TACL 2023.

“It is possible that large text-only models learn a sufficiently rich conceptual 
structure that could allow them to be grounded in a data-efficient way.”

LMs can and do leverage structured relationships in pertaining data to 
learn such relational meaning.

Bender and Koller. Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data. ACL 2020.

Limitations of LM Capabilities
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I haven’t, is he 
good at bowling?

Miscommunication

He is on track to complete his PhD in 
three years.👩🔬

Oh, no, he’s already in his fifth year.👩🔬

That's really fast! 🧑🎓

Deception

Since I took office, Wisconsin now has 
the 2nd highest health care quality 
ranking in the country.

🧑💼

🧑💼 I didn’t say it wasn’t.

That’s amazing! … But wait, it was 
already the 2nd before you took office?? 🕵
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Alisa saw
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• Manual curation (142 ex.): linguistics textbooks, existing datasets, etc.

• Automatic generation + careful validation (1503 ex.)
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🤖 Alisa saw the dog bowl.

👨🎓

👩🎓

The dog can bowl.

Entail Neutral Contradict
Alisa saw the dog going bowling. Alisa saw the dog’s bowl.

🧑⚖

ICL examples

Entail Neutral Contradict

Entail Neutral Contradict
Alisa saw the dog going bowling. Alisa saw the bowl for dogs.

Entail Neutral
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LM Evaluation
1. Can LMs generate disambiguations?

2. Can LMs recognize potential disambiguations?

3. Can LMs model continuations reflecting different interpretations?

• Evaluated models

• Base LMs: LLaMa-65B, GPT-3 (davinci)

• Instruction-following/aligned LMs: Flan-T5-xxl, InstructGPT, GPT-3.5, GPT-4
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Context: He is on track to complete his PhD in three years.

Claim: He will spend a total of three years completing his PhD.

Given the context alone, is this claim true, false, or inconclusive?


We don’t know, because the context can be interpreted in many different ways:

1. He is on track to complete his PhD in three more years from now. Then the claim is inconclusive.

2. He is on track to complete his PhD in three years from when he started. Then the claim is true.

Demonstrations ⨉ 4

    Alisa saw the bowl for dogs. Then the claim is inconclusive.

2. Alisa saw the dog going bowling. Then the claim is true.
    Alisa saw the bowl for dogs. Then the claim is inconclusive.

2. Alisa saw the dog going bowling. Then the claim is true.



1. Generating disambiguations

16

Context: Alisa saw the dog bowl.

Claim: The dog can bowl.
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1.

Context: He is on track to complete his PhD in three years.

Claim: He will spend a total of three years completing his PhD.

Given the context alone, is this claim true, false, or inconclusive?


We don’t know, because the context can be interpreted in many different ways:

1. He is on track to complete his PhD in three more years from now. Then the claim is inconclusive.

2. He is on track to complete his PhD in three years from when he started. Then the claim is true.

In each example, you will be given some context and a claim, where the correctness of the claim is affected 
by some ambiguity in the context. Enumerate two or three interpretations of the context that lead to 
different judgments about the claim.

Demonstrations ⨉ 4

Instruction

    Alisa saw the bowl for dogs. Then the claim is inconclusive.

2. Alisa saw the dog going bowling. Then the claim is true.
    Alisa saw the bowl for dogs. Then the claim is inconclusive.

2. Alisa saw the dog going bowling. Then the claim is true.
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Q: Alisa saw the dog bowl. This may mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This does not necessarily mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This cannot mean: The dog can bowl. True or False?
A: {True, False}

Q: Alisa saw the dog bowl. This can only mean: The dog can bowl. True or False?
A: {True, False}
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3. Modeling continuations
• Intuition: continuations conditioned on a disambiguated sentence should be 

reasonable continuations to the ambiguous sentence too

•  should be “reasonably” smallKL(P( ⋅ |d) ∥ P( ⋅ |a))

•  for some distractor KL(P( ⋅ |d) ∥ P( ⋅ |a)) < KL(P( ⋅ | d̃) ∥ P( ⋅ |a)) d̃

20

It beat all animals in the bowling alley. Alisa saw the dog going bowling.

Alisa saw the dog bowl.

Alisa saw the dog going cycling.
✘

It beat all animals in the bowling alley. d
a

d̃
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Summary
• Despite the importance of ambiguity in language, it is not represented well in 

state-of-the-art LMs

• More interesting findings in paper

• It is challenging to finetune LMs to recognize ambiguity 

• Ambiguity partly explains annotator disagreement

• Ambiguity-aware models bear practical utility, e.g., to detect misleading 
political claims

22
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GPT-4 is so good at math!
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Linear-time algorithm

for substring finding?

GPT-4 can code so well!
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• In order to claim general abilities…

• We can’t generalize just from test instances

• High variance; may be cherry-picked

• We can’t generalize just from existing datasets

• Data contamination

• We can’t generalize just from task instances

• Task instance ability ≠ general task ability

• If a cook only makes perfect mapo tofu, but nothing else, are they still a good cook?
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28Brown et al. Language Models are Few-Shot Learners. NeurIPS 2020.
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Base-10 Base-9

default counterfactual

You are a mathematician. Assuming that all numbers are in base-9 
where the digits are "012345678", what is 27+62? Let’s think step by step.

ADDbase(a, b)

Starting from the trailing digits of  and , add them together.

If greater than , carry over.

Move on to the penultimate digit.

…

a b
base
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Base-10 Base-9

default counterfactual

You are a mathematician. Assuming that all numbers are in base-9 
where the digits are "012345678", what is 27+62? Let’s think step by step.

ADDbase−10(a, b)
ADDbase−9(a, b)

⋯

ADDbase(a, b) 💯

🌀

💯

💯
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GPT-4

Base-10 Base-9

default counterfactual

You are a mathematician. Assuming that all numbers are in base-9 
where the digits are "012345678", what is 27+62? Let’s think step by step.
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Base
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GPT-4

Base-10 Base-9

default counterfactual

You are a mathematician. Assuming that all numbers are in base-10 
where the digits are "0123456789", what is the next number after 78?
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What follows 78? 79 80 Counterfactual comprehension

check (CCC)

GPT-4

Base-10 Base-9

default counterfactual

Task CCC

You are a mathematician. Assuming that all numbers are in base-9 
where the digits are "012345678", what is the next number after 78?
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ra
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Base
8 9 10 11 16
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GPT-4
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What follows 78? 79 80 Counterfactual comprehension

check (CCC)

Task (Let’s think step by step.) CCCTask

GPT-4 GPT-3.5 Claude PaLM-2

Base-10 Base-9

default counterfactual

You are a mathematician. Assuming that all numbers are in base-9 
where the digits are "012345678", what is the next number after 78?

Ac
cu

ra
cy
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)

Base
8 9 10 11 16 8 9 10 11 16
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100

8 9 10 11 16 8 9 10 11 16
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8 9 10 11 16 8 9 10 11 16
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Some Notes 🎶

• I can’t do base-9 arithmetic as well either

• Under a fixed time budget, probably, but what if given unlimited time?

• Why calibrate using human performance?

• Is a perfect yet base-10-specific implementation bad?

• Not necessarily, but it represents a lack of generalizability

• We don’t actually know if the LM implements perfect base-10 arithmetic!

• Do we care about base-9 arithmetic?

• It is certainly useful sometimes

• More importantly, it is a test setting not confounded by memorization
32
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Sobania et al. An Analysis of the Automatic Bug Fixing Performance of ChatGPT. ICSE 2023.
Xia et al. Practical Program Repair in the Era of Large Pre-trained Language Models. 2022.

“By providing such hints to ChatGPT, its success rate can be 
further increased, fixing 31 out of 40 bugs, outperforming 

state-of-the-art.”

“We also compare the PLMs against recent state-of-the-art 
APR tools. Our study demonstrates that directly applying 

state-of-the-art PLMs can already substantially outperform 
all existing APR techniques on all our datasets.”
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sorted( 

  [“ab”, “ba”],

  key=lambda x: x[1],

)

[“ba”, “ab”] [“ab”, “ba”]

[“a”, “b”, “c”][1] “b” “a” Counterfactual comprehension

check (CCC)

Task (Let’s think step by step.) CCCTask

GPT-4 GPT-3.5 Claude

Python

0-based indexing

ThonPy

1-based indexing
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)

0 1 0 1
0
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Index From
0 1 0 1

0
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100

0 1 0 1
0
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41Srivastava et al. Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. 2023.
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Task (Let’s think step by step.) CCCTask

GPT-4 GPT-3.5 Claude PaLM-2

Regular Opening Swapped

Knights & Bishops

✔︎ ✘

Random
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NY N Y
0
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100

NY N Y
0

50

100

NY N Y
0

50

100

Regular Board State?
NY N Y NY N Y

0

50

100

0

50

100
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Reasoning or Reciting?
• LMs possess some degree of reasoning abilities for many tasks

• Much of observed LM performance is from overfitting to (or reciting) the default 
task variant

• Potentially direct memorization

• Over-estimates generalizability

• ICL doesn’t fully bridge the gap

• But default performance is useful to measure progress

44
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Future Directions
• Tease apart instance memorization vs. overfitting to task variants

• Pinpoint how LMs implement each task

• How can we build models that are better task-general reasoners?

45
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<EOSlides>


