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e Graphs in NLP and ML
* Graph neural networks (GNNSs)

* Applying GNNs to linguistic graphs: Infusing Finetuning with Semantic
Dependencies



Graphs in NLP and ML



Linguistic Structures

Running example: WSJ #20209013

“A similar technique Is almost impossible to apply to other crops, such as
cotton, soybeans and rice.”
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Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”
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Phrase structure tree; parsed by http://corenlp.run



Linguistic Structures

Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”
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A similar technique is almost impossible to apply to other crops , such as cotton , soybeans and rlce :

Stanford Dependencies (UD) tree; from Ivanova (2012)



Linguistic Structures
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Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”

cotton, soybeans and rice .

DELPH-IN MRS-derived dependencies (DM) graph; from Oepen et al. (2015)



Linguistic Structures

Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”
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Discourse Representation Graph (DRG) graph; from Oepen et al. (2020)



Linguistic Structures

Seattle , Washington
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Coreference graph; from https://demo.allennlp.org/coreference-resolution
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“The founders of Google computed the Perron-Frobenius eigenvector of the web graph and became billionaires.”
— Preface to Spectra of Graphs by Brouwer and Haemers
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Graph Neural Networks
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X = | V|,m = |E|
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Formulation

e Undirected G = (V, E) with adjacency matrix A € R n=|V|,m = | E|

e [nput

 Node feature X € R4

mXd

€

» (Sometimes) Edge feature X € |

nxd

0,

» QOutput: node representation Z € |

« How do we perform this update while leveraging the graph structure?
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Message Passing Framework; aka Spatial Methods
Gilmer et al. (2018)
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Gilmer et al. (2018)
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Message Passing Framework; aka Spatial Methods
Gilmer et al. (2018)
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Special Case: CNN as Message Passing
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Graph Convolutional Networks (GCN)
Kipf and Welling (2017)
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Graph Convolutional Networks (GCN)
Kipf and Welling (2017)
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Why “Convolutional”? The Short Answer

e | ocalized filters/kernels
e Translation invariance

 Hierarchical/multi-scale
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Why “Convolutional”? The Long Answer

* Message passing (spatial): /! =6 Z : Wlhl.]

jem(i)u{i}\/|ﬂ/(i)|+1\/|ﬂ/(j)\+1 /
e Matrix version: H*' = (;(D—%A‘Ij—zHlWl) where A = A +1.D = diag (Z A”>

* Motivation in Spectral Graph Theory

o Spectral decomposition of the normalized graph Laplacian
L=1—-DZAD™ 7= UAU"

* (Generalizing convolution to “graph convolution”:
h*;g=F"'(F(h)® F(g)), F(h) = Uh

* Approximation leads to the matrix version above

19
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| have hode embeddings. Now what?

- Node classification: softmax(z;)

o 1
 Graph classification: softmax | — Z Z
n

l

o Link prediction: p(AU-) = Singid(ZiTZj)



GCN for Semi-Supervised Learning
Kipf and Welling (2017)

e Citation networks with partially labeled nodes
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GCN for Semi-Supervised Learning
Kipf and Welling (2017)

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [28] 59.6 59.0 71.1 26.7

LP [32] 45.3 68.0 63.0 26.5
DeepWalk [22] 43.2 67.2 65.3 H&.1

ICA [18] 69.1 75.1 73.9 23.1
Planetoid* [29] 64.7 (26s) 75.7(13s) 77.2(25s) 61.9 (185s)
GCN (thispaper) 70.3(7s) 81.5(4s) 79.0(38s) 66.0 (48s)
GCN (rand. splits) 67.94+0.5 80.1+£0.5 78.9+0.7 58441.7

t-SNE of hidden layer activation.
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GCN for Semi-Supervised Learning

Kipf and Welling (2017)

Description Propagation model Citeseer Cora Pubmed

K =3 K ~ 69.8 79.5 74.4

Chebysheyv filter (Eq. 5) K —9 2 k=0 k(L)X Ok 69.6 81.2 73.8
15t-order model (Eq. 6) X0, + D—%AD—%X@l 68.3  80.0 77.5
Single parameter (Eq. 7) (In + D‘EAD‘E)X('-) 69.3 79.2 77.4

2 Renormalization trick (Eq. 8) D 2AD 2X© 70.3 81.5 79.0
15'-order term only D 2AD 2X6© 68.7  80.5 77.8

= Multi-layer perceptron X6 46.5 55.1 71.4
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GCN for Semi-Supervised Learning

Kipf and Welling (2017)
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Relational Graph Convolutional Networks (RGCN)
Schlichtkrull et al. (2018)



Relational Graph Convolutional Networks (RGCN)
Schlichtkrull et al. (2018)

 Relations (edge types) &



Relational Graph Convolutional Networks (RGCN)
Schlichtkrull et al. (2018)

 Relations (edge types) &

jen@uliy Y

1
' GCN:h§+1:(;[ Z C—W’h]l.] where ¢; =/ |/ |+ 1/ |/ + 1



Relational Graph Convolutional Networks (RGCN)
Schlichtkrull et al. (2018)
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Relational Graph Convolutional Networks (RGCN)
Schlichtkrull et al. (2018)

 Relations (edge types) &

1
' GCN:h§+1:(;[ Z C—W’h]l.] where ¢; =/ |/ |+ 1/ |/ + 1

jen@uliy Y

C..
re jeN (@) Y

|
* RGCN: hi*! = 0[ D> D W,{h}] where c;, = | A7(0)]|

e Assume £ and /" capture self-loop

 Can be used to model directed graphs
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RGCN: Regularization

Schlichtkrull et al. (2018)
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RGCN: Regularization

Schlichtkrull et al. (2018)

« Basis-decomposition: Wl Zarb
b=1

« Block-diagonal-decomposition: W,{ = @Q;ﬁr
b=1
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Graph Attention Networks (GAT)

Velickovic et al. (2018)
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Graph Attention Networks (GAT)

Velickovic et al. (2018)
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Graph Attention Networks (GAT)

Velickovic et al. (2018)

| . .
« GCN: hﬁ“ =0 Z —Wlh]l. where ¢; =/ |V (@D |+ 14/ [V ()] + 1
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. They used a(h;, h)) = LeakyReLU(a'[Wh;||Wh;])

i = softmaxj(a(hi, hj))



GAT for Semi-Supervised Learning

Velickovic et al. (2018)

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%

LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%

ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%

GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0 %
MoNet (Monti et al., 2016) 817+ 05% — 78.8 £+ 0.3%
GCN-64* 814+05% 709+05% 79.0+0.3%
GAT (ours) 83.0 £0.7% 725 +0.7% 79.0 £+ 0.3%




GAT for Semi-Supervised Learning
Velickovic et al. (2018)
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Special Case: Transformer as Message Passing

Transformer. From Guo et al. (2018).



Special Case: Transformer as Message Passing

h,
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Transformer. From Guo et al. (2018). Star-Transformer. From Guo et al. (2018).



Applying GNNSs to Linguistic
Graphs



Infusing Finetuning with
Semantic Dependencies

Zhaofeng Wu, Hao Peng, and Noah Smith. TACL 2021.



Motivation
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Devlin et al. (2018); Liu et al. (2019b)

Motivation

Pretrained Transformer

It was not bad



Hewitt and Manning (2019); Tenney et al. (2019); Liu et al. (2019a)

Motivation

Pretrained Transformer

It was not bad



Would semantics help?
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Introduction

 We show BERT/RoBERTa less prominently surface semantics...
e ... and the explicit incorporation of semantic information:

1. Improves downstream task performance

2. Helps guard against frequent yet invalid heuristics

3. Better captures nuanced linguistic phenomena

4. Increases training sample efficiency
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Adapted from WSJ #20209013

Operationalizing “Meaning”

ARG?2

BV ARG1

This technique Is Impossible to adopt

DELPH-IN MRS-Derived Dependencies (DM; )
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This technique Is Iimpossible to adopt

Stanford Dependencies (SD; )



Probing RoBERTa with Semantics

Linear cClassifier
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RoBERTa

This technigue is impossible to adopt.

Probing model (Shi et al.,, 2016; Adiet al., 2017)



Probing RoBERTa with Semantics
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RoBERTa RoBERTa

This technique is impossible to adopt. This technique is impossible to adopt.

Probing model (Shi et al., 2016; Adiet al., 2077) Ceiling model (Dozat and Manning, 2017, 2018)



Probing RoBERTa with Semantics

Probing - Ceiling; RoBERTa-base

-14

LAS/F1

-2

-23.5

-24.9

-28
Absolute A Relative A (%)

. SD (syntactic) | DM (semantic)




Can we use semantics to
augment pretrained transformers?




Semantics-Infused Finetuning (SIFT)
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| so love to make slides.
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Semantics-Infused Finetuning (SIFT)

RoBERTa

| so love to make slides.



Che et al. (2019)

Semantics-Infused Finetuning (SIFT)

| so love to make slides.



Semantics-Infused Finetuning (SIFT)
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Schlichtkrull et al. (2017)

Semantics-Infused Finetuning (SIFT)




Semantics-Infused Finetuning (SIFT)
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Semantics-Infused Finetuning (SIFT)

Max ooling

RoBERTa




Experiments

* Dataset: GLUE

 Backbone: RoBERTa

e Parser: SOTA DM parser with 92.5 labeled F1
 Graph Encoder: RGCN

e 2 layers
» Hidden dimension € {256,512,768}

e Epochs € {3,10,20}, learning rate € {1 X 10742 % 1()_5}

18
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Analysis: When Do Semantic Structures Help?

e [wo datasets

« HANS tests if a model uses invalid reasoning heuristics

 GLUE diagnostics tests the model capability in various linguistic
phenomena

 Examine a model trained on existing NLI datasets with synthetic NLI
examples

20



Analysis: HANS Lexical Overlap

The actor stopped the banker. doesnotentail The banker stopped the actor.

RoBERTa SIFT
68.1 71.0 (+2.9)
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Analysis: HANS Subsequence

The judges heard the actor resigned.

does not entall

RoBERTa SIFT

The judges heard the actor.

25.8 29,5 (+3.7)
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Analysis: HANS Constituent

If the actor slept, the senator ran. doesnotentail The actor slept.

RoBERTa SIFT
37.9 37.6 (-0.3)
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Analysis: HANS Constituent

If the actor slept, the senator ran. doesnotentail The actor slept.

Before the actor slept, the senator ran. entails

RoBERTa SIFT
37.9 37.6 (-0.3)
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Analysis: GLUE Diagnostics

| opened the door. entails The door opened.

Pred-Arg Structure |
does not entail | opened.

| have no pet puppy. entails | have no corgi pet puppy.
Logic .
does not entail | have no pet.

RoBERTa | SIFT
43.5 | 44.6 (+1.1)
36.2 | 38.3 (+2.1)

24



Analysis: GLUE Diagnostics

| have a dog. entails | have an animal.

Lexical Semantics |
does not entail | have a cat.

| live in Seattle. entails | live in the U.S.

Knowledge . .. :
does not entail | live in Antarctica.

RoBERTa | SIFT
45.6 | 44.8 (-0.8)
28.0 | 26.3(-1.7)

25



Analysis: Sample Efficiency

e Use the same downsampled MNLI training set to train RoBERTa & SIFT



Analysis: Sample Efficiency

e Use the same downsampled MNLI training set to train RoBERTa & SIFT
Absolute A (SIFT - RoBERTa) on MNLI

Accuracy
N w

N

ID. OOD.
7 100% (392k) M 0.5% (1963) M 0.2% (785) M 0.1% (392)
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Summary

Probing - Ceiling; RoBERTa-base
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Summary

Probing - Ceiling; RoBERTa-base

0
-7
5 -1a
- -135 )
3 14.2
21

-23.5
-24.9

Absolute A Relative A (%)
"~ SD (syntactic) [ DM (semantic)

Max Pooling

RoBERTa

| so love to make slides .
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Further Readings

A Comprehensive Survey on Graph Neural Networks (Wu et al., 2019)

 Deep Learning on Graphs: A Survey (Zhang et al., 2020)

 Graph Neural Networks: A Review of Methods and Applications (Zhou et al.,
2021)

e Frameworks

 DGL: https://qgithub.com/dmlc/dal

* PyTorch Geometric: https://github.com/rustyl1s/pytorch geometric

48


https://github.com/dmlc/dgl
https://github.com/rusty1s/pytorch_geometric

Questions?
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