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Outline
• Graphs in NLP and ML


• Graph neural networks (GNNs)


• Applying GNNs to linguistic graphs: Infusing Finetuning with Semantic 
Dependencies

2



Graphs in NLP and ML



Linguistic Structures

Running example: WSJ #20209013

“A similar technique is almost impossible to apply to other crops, such as 
cotton, soybeans and rice.”
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Linguistic Structures
Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”

Phrase structure tree; parsed by http://corenlp.run
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Linguistic Structures
Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”

Stanford Dependencies (UD) tree; from Ivanova (2012)
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Linguistic Structures
Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”

DELPH-IN MRS-derived dependencies (DM) graph; from Oepen et al. (2015)
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Linguistic Structures
Running example: WSJ #20209013 “A similar technique is almost impossible to apply to other crops, such as cotton, soybeans and rice.”

Discourse Representation Graph (DRG) graph; from Oepen et al. (2020)
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Linguistic Structures

Coreference graph; from https://demo.allennlp.org/coreference-resolution
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Citation Graph
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PageRank

“The founders of Google computed the Perron-Frobenius eigenvector of the web graph and became billionaires.”

— Preface to Spectra of Graphs by Brouwer and Haemers
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Graph Neural Networks



Formulation
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Formulation

• Undirected  with adjacency matrix ; G = (V, E) A ∈ ℝn×n n = |V | , m = |E |

• Input


• Node feature 


• (Sometimes) Edge feature 

X ∈ ℝn×dv

Xe ∈ ℝm×de

• Output: node representation Z ∈ ℝn×do

• How do we perform this update while leveraging the graph structure?
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Message Passing Framework; aka Spatial Methods
Gilmer et al. (2018)
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Gilmer et al. (2018)
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Special Case: CNN as Message Passing
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Graph Convolutional Networks (GCN)
Kipf and Welling (2017)
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Graph Convolutional Networks (GCN)
Kipf and Welling (2017)

Attempt #1: hl+1
i = σ ∑

j∈$(i)
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Wlhl
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Attempt #3: hl+1
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Wlhl
j
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Why “Convolutional”? The Short Answer
• Localized filters/kernels


• Translation invariance


• Hierarchical/multi-scale
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2 HlWl) Ã = A + In, D̃ = diag (∑
i
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• Matrix version:  where Hl+1 = σ (D̃− 1
2 ÃD̃− 1

2 HlWl) Ã = A + In, D̃ = diag (∑
i

Ãii)
• Motivation in Spectral Graph Theory

• Spectral decomposition of the normalized graph Laplacian 
L = In − D− 1

2 AD− 1
2 = UΛU⊤

• Generalizing convolution to “graph convolution”: 
h *G g = F−1(F(h) ⊙ F(g)), F(h) = Uh

• Approximation leads to the matrix version above
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I have node embeddings. Now what?

• Node classification: softmax(zi)

• Graph classification: softmax ( 1
n ∑

i
zi)

• Link prediction: p(Aij) = sigmoid(z⊤
i zj)

20



GCN for Semi-Supervised Learning
Kipf and Welling (2017)

• Citation networks with partially labeled nodes

21



GCN for Semi-Supervised Learning
Kipf and Welling (2017)

t-SNE of hidden layer activation.
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GCN for Semi-Supervised Learning
Kipf and Welling (2017)
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GCN for Semi-Supervised Learning
Kipf and Welling (2017)
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Relational Graph Convolutional Networks (RGCN)
Schlichtkrull et al. (2018)
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• Relations (edge types) ℛ

• GCN:  where hl+1
i = σ ∑

j∈$(i)∪{i}
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cij

Wlhl
j cij = |$(i) | + 1 |$( j) | + 1

• RGCN:  where 


• Assume  and  capture self-loop

hl+1
i = σ ∑

r∈ℛ
∑

j∈$r(i)

1
cijr

Wl
rhl

j cijr = |$r(i) |

ℛ $r

• Can be used to model directed graphs
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RGCN: Regularization
Schlichtkrull et al. (2018)
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RGCN: Regularization
Schlichtkrull et al. (2018)

• Basis-decomposition: Wl
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Graph Attention Networks (GAT)
Velickovič et al. (2018)
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Graph Attention Networks (GAT)
Velickovič et al. (2018)

• GCN:  where hl+1
i = σ ∑

j∈$(i)∪{i}

1
cij

Wlhl
j cij = |$(i) | + 1 |$( j) | + 1

• GAT:  where hl+1
i = ∥K

k=1σ ∑
j∈$(i)∪{i}

αk;l
ij Wk;lhl

j αij = softmaxj(a(hi, hj))

• They used a(hi, hj) = LeakyReLU(a⊤[Whi∥Whj])
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GAT for Semi-Supervised Learning
Velickovič et al. (2018)
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GAT for Semi-Supervised Learning
Velickovič et al. (2018)

GCN GAT
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Special Case: Transformer as Message Passing

Star-Transformer. From Guo et al. (2018).Transformer. From Guo et al. (2018).
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Star-Transformer. From Guo et al. (2018).Transformer. From Guo et al. (2018).
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Applying GNNs to Linguistic 
Graphs



Infusing Finetuning with 
Semantic Dependencies

Zhaofeng Wu, Hao Peng, and Noah Smith. TACL 2021.
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Motivation
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Motivation
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It   was   not   bad   .

!

Pretrained Transformer

Devlin et al. (2018); Liu et al. (2019b)



POS Tagger

PRP   VBD     RB      JJ      .

Parser

punctnsubj
cop advmod

Motivation

4

It   was   not   bad   .

!

Hewitt and Manning (2019); Tenney et al. (2019); Liu et al. (2019a)

Pretrained Transformer



Would semantics help?
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Introduction
• We show BERT/RoBERTa less prominently surface semantics…

• … and the explicit incorporation of semantic information:

1. Improves downstream task performance

2. Helps guard against frequent yet invalid heuristics

3. Better captures nuanced linguistic phenomena

4. Increases training sample efficiency

6



Operationalizing “Meaning”

DELPH-IN MRS-Derived Dependencies (DM; Ivanova et al., 2012)
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Operationalizing “Meaning”

DELPH-IN MRS-Derived Dependencies (DM; Ivanova et al., 2012)

7

This    technique    is    impossible    to    adopt    .

BV

ARG2

ARG1

Stanford Dependencies (SD; de Marneffe et al., 2006)

Adapted from WSJ #20209013 

This    technique    is    impossible    to    adopt    .

NMOD AMOD

P

SBJ PRD IM



Probing RoBERTa with Semantics

8
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Probing RoBERTa with Semantics

8

RoBERTa

This technique is impossible to adopt .
Ceiling model (Dozat and Manning, 2017, 2018)

MLP Classifier

BV
ARG2

ARG1

RoBERTa

This technique is impossible to adopt .
Probing model (Shi et al., 2016; Adi et al., 2017)

Linear Classifier

BV
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ARG1
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Probing RoBERTa with Semantics
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Probing - Ceiling; RoBERTa-base

LA
S/

F1

-28

-21

-14

-7

0

Absolute Δ Relative Δ (%)

-24.9
-23.5

-14.2-13.5

SD (syntactic) DM (semantic)



Can we use semantics to 
augment pretrained transformers?
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Semantics-Infused Finetuning (SIFT)
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Semantics-Infused Finetuning (SIFT)
Schlichtkrull et al. (2017)
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Experiments
• Dataset: GLUE (Wang et al., 2018)


• Backbone: RoBERTa (Liu et al., 2019b)


• Parser: SOTA DM parser with 92.5 labeled F1 (Che et al., 2019)


• Graph Encoder: RGCN (Schlichtkrull et al., 2017)


• 2 layers


• Hidden dimension 


• Epochs , learning rate

∈ {256,512,768}
∈ {3,10,20} ∈ {1 × 10−4,2 × 10−5}
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Analysis: When Do Semantic Structures Help?
• Two datasets


• HANS tests if a model uses invalid reasoning heuristics (McCoy et al., 
2019) 


• GLUE diagnostics tests the model capability in various linguistic 
phenomena (Wang et al., 2018)


• Examine a model trained on existing NLI datasets with synthetic NLI 
examples

20



Analysis: HANS Lexical Overlap

21

The actor stopped the banker. The banker stopped the actor.does not entail

RoBERTa SIFT
68.1 71.0 (+2.9)



The judges heard the actor resigned. The judges heard the actor.does not entail

Analysis: HANS Subsequence

22

RoBERTa SIFT
25.8 29.5 (+3.7)



If the actor slept, the senator ran. The actor slept.does not entail

Analysis: HANS Constituent
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If the actor slept, the senator ran. The actor slept.does not entail

Analysis: HANS Constituent

23

RoBERTa SIFT
37.9 37.6 (-0.3)

entailsBefore the actor slept, the senator ran.



Analysis: GLUE Diagnostics

24

RoBERTa SIFT

43.5 44.6 (+1.1)

36.2 38.3 (+2.1)

entails

does not entail I opened.
Pred-Arg Structure

I have no pet puppy. I have no corgi pet puppy.entails

does not entail I have no pet.
Logic

I opened the door. The door opened.



Analysis: GLUE Diagnostics

25

RoBERTa SIFT

45.6 44.8 (-0.8)

28.0 26.3 (-1.7)

entails

does not entail I have a cat.
Lexical Semantics

I live in Seattle. I live in the U.S.entails

does not entail I live in Antarctica.
Knowledge

I have a dog. I have an animal.



Analysis: Sample Efficiency
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Analysis: Sample Efficiency
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• Use the same downsampled MNLI training set to train RoBERTa & SIFT

Absolute Δ (SIFT - RoBERTa) on MNLI

Ac
cu

ra
cy

0

1

2

3

4

ID. OOD.

3.3

2.6

1.8

2.5

1.1
1.5

0.4
0.2

100% (392k) 0.5% (1963) 0.2% (785) 0.1% (392)
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Further Readings
• A Comprehensive Survey on Graph Neural Networks (Wu et al., 2019)


• Deep Learning on Graphs: A Survey (Zhang et al., 2020)


• Graph Neural Networks: A Review of Methods and Applications (Zhou et al., 
2021)


• Frameworks


• DGL: https://github.com/dmlc/dgl


• PyTorch Geometric: https://github.com/rusty1s/pytorch_geometric

48

https://github.com/dmlc/dgl
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Questions?
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