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LMs can’t learn meaning from form alone.

Emily M. Bender and Alexander Koller. 2020. Climbing towards NLU: On meaning, form, and understanding in the age of data. In Proc. of ACL.
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LMs can’t learn meaning from form alone.

Can we say LMs understand language?

What are these “powerful” LMs really capable of?

Emily M. Bender and Alexander Koller. 2020. Climbing towards NLU: On meaning, form, and understanding in the age of data. In Proc. of ACL.
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LMs can’t learn execution.

There are assertions:
assert f(6) == 8

Google Scholar

et al.

The academic superstar
everybody wants to be co-
author with.

Assertions enable meaning learnability in some languages.

LMs learn the meaning of some languages with assertions.

But not natural language.




Can LMs Learn From Assertions?
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Direct Evaluation

e (((=T)VF)v(-T))

e (small twist, see paper)
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We let GPT-2 complete the simple
arithmetic problem Three plus five
equals. The five responses below [...]
show that this problem is beyond the
current capability of GPT-2, and, we
would argue, any pure LM.
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We let GPT-2 complete the simple
arithmetic problem 7hree plus five
equals. The five responses below [...]
show that this problem is beyond the
current capability of GPT-2, and, we
would argue, any pure LM.

LMs can learn to consistently compare and evaluate
the meaning of propositional logic expressions.
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Strong Transparency

(i.e., context-independency)

* An expression is strongly transparent if its meaning is context-independent

* A language is strongly transparent if all of its expressions are

° His corgis run.
Today, some corgis ran.
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Another Summary

LMs can learn the meaning of a strongly transparent language.

And strong transparency is important for this learnability.
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Formalizing Referential Opacity

 Theorem: A compositional language with referential opacity is not strongly
transparent

 We know the meaning of strongly transparent languages is learnable
 But we saw strong transparency is important for learnability

« How well do LMs learn this NL phenomenon that is not strongly transparent?
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Setup

- Data: {(s{,5,,V)}

¢ She to meet {Superman/Clark Kent}. y = Non-equivalent

e She to meet {Superman/Clark Kent}. y = Equivalent
 Models: pretrained GPT-2-XL, BERT-large

 Methods: probing and similarity-based analysis

19



Probing Results



Probing Results

100
73
50

25

Probing Accuracy

GPT-2-XL BERT-Large

20



Probing Results

100

75

25

Probing Accuracy

GPT-2-XL BERT-Large

random

20



Probing Results

Probing Accuracy

100

75

GPT-2-XL BERT-Large

= random

20



Yet Another Summary

Although LMs could learn the meaning of a strongly

transparent language, they don’t well-represent referential
opacity and hence the meaning of the entirety of NL.
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Propositional Logic vs. NL

 Why did we see >random probing accuracy on the perturbed propositional
logic, but not referential opacity?

 Maybe referential opacity is just harder

 Maybe it’'s because of the variation in NL, with sentences that are
untruthful, subjective, etc.

 Or maybe...
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Propositional Logic vs. NL

 Why did we see >random probing accuracy on the perturbed propositional
logic, but not referential opacity?

 Maybe referential opacity is just harder

 Maybe it’'s because of the variation in NL, with sentences that are
untruthful, subjective, etc.

 Or maybe...

 We don’t have such an explicit representation of equivalence in NL
pretraining
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<EOSies>

* Aligning with the theoretical guarantee, current LM architectures & objectives
can learn the meaning of a strongly transparent language

o Strong transparency plays a big part in this learnability
* Though learnability is not completely destroyed w/o strong transparency

 On NL, there is no evidence at all of LMs representing referential opacity, a
phenomenon that is not strongly transparent

o Careful design of the pretraining data/setup is crucial
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