Transparency Helps Reveal When Language Models Learn Meaning

TACL 2023

Zhaofeng Wu, Will Merrill, Hao Peng, Iz Beltagy, and Noah Smith

 $\Delta \lambda = \Delta C^{\circ} + C^{\circ} + \Delta C^{\circ} +$

 Δ > Δ C° σ > $\dot{\circ}$ \circ $\dot{\circ}$ \circ

LMs can't learn meaning from form alone.

 $\Delta \lambda = \Delta C^{0} + C^{0} + \Delta C^{0} +$

LMs can't learn meaning from form alone.

Can we say LMs understand language?

 $\Delta \lambda < \Delta C^* \sigma D < \lambda C^* \lambda C$

LMs can't learn meaning from form alone.

Can we say LMs understand language?

What are these "powerful" LMs really capable of?

```
def f(n):
    if n == 1 or n == 2:
        return 1
    return f(n - 1) + f(n - 2)
```

```
def f(n):
    if n == 1 or n == 2:
        return 1
    return f(n - 1) + f(n - 2)
```



```
def f(n):
    if n == 1 or n == 2:
        return 1
    return f(n - 1) + f(n - 2)
```


There are assertions: assert f(6) == 8


```
def f(n):
    if n == 1 or n == 2:
        return 1
    return f(n - 1) + f(n - 2)
```


There are assertions: assert f(6) == 8

Assertions enable meaning learnability in some languages.

The academic superstar everybody wants to be coauthor with.

Cited by

VIEW ALL

	All	Since 2017
Citations	3700948	955667
h-index	333	250
i10-index	333	333

et al.

```
def f(n):
    if n == 1 or n == 2:
        return 1
    return f(n - 1) + f(n - 2)
```


There are assertions: assert f(6) == 8

Assertions enable meaning learnability in some languages.

et al.

The academic superstar everybody wants to be co-

VIEW ALL

Cited by

	All	Since 2017
Citations	3700948	955667
h-index	333	250
10-index	333	333

author with.

There are assertions: assert f(6) == 8

Assertions enable meaning learnability in some languages.

et al.

The academic superstar everybody wants to be coauthor with.

LMs learn the meaning of some languages with assertions.

There are assertions: assert f(6) == 8

Assertions enable meaning learnability in some languages.

et al.

The academic superstar everybody wants to be coauthor with.

LMs learn the meaning of some languages with assertions.

Can LMs Learn From Assertions?

```
RoBERTa-like MLM
 GPT-2-like ALM
```

RoBERTa-like MLM

GPT-2-like ALM

Probing

RoBERTa-like MLM

GPT-2-like ALM

Probing

unseen

```
((\neg T) \land (\neg (T \lor (\neg F)))) = (T \lor (\neg ((\neg T) \lor (\neg (\neg F))))))
                                                                                                                                           Pretraining
(Tv(F<sub>\(\Delta\(\Delta\)\)</sub>)
                                                                                                                                              Probing
                                RoBERTa-like MLM
 (F∧(¬T))
                                   GPT-2-like ALM
```

```
((\neg T) \land (\neg (T \lor (\neg F)))) = (T \lor (\neg ((\neg T) \lor (\neg (\neg F))))))
                                                                                                                                          Pretraining
        (Tv(F<sub>\(\T\)</sub>))
                                                                                                                                            Probing
                                      RoBERTa-like MLM
          (F∧(¬T))
                                         GPT-2-like ALM
unseen
```

unseen

```
((\neg T) \wedge (\neg (T \vee (\neg F))))) = (T \vee (\neg ((\neg T) \vee (\neg (\neg F))))))
                                                                                                                                           Pretraining
(Tv(F<sub>\(\T\)</sub>))
                                RoBERTa-like MLM
 (F∧(¬T))
                                   GPT-2-like ALM
```


Increasingly more probe parameters

Increasingly more probe parameters

Direct Evaluation

Direct Evaluation

• (((¬T) vF) v(¬T))=____

Direct Evaluation

- $(((\neg T) \vee F) \vee (\neg T)) = \underline{\hspace{1cm}}$
- (small twist, see paper)

Direct Eval Accuracy

Direct Eval Accuracy

Summary

Summary

We let GPT-2 complete the simple arithmetic problem *Three plus five* equals. The five responses below [...] show that this problem is beyond the current capability of GPT-2, and, we would argue, any pure LM.

Summary

We let GPT-2 complete the simple arithmetic problem *Three plus five* equals. The five responses below [...] show that this problem is beyond the current capability of GPT-2, and, we would argue, any pure LM.

LMs can learn to consistently compare and evaluate the meaning of propositional logic expressions.

What About Other Languages?

What About Other Languages?

Assertions enable meaning learnability in some languages.

What About Other Languages?

Assertions enable meaning learnability in some languages.

(i.e., context-independency)

An expression is strongly transparent if its meaning is context-independent

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

(i.e., context-independency)

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

 $((T\Lambda(FVF))V(TV(F\Lambda T)))$

(i.e., context-independency)

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

(i.e., context-independency)

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

Some corgis run.

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

- An expression is strongly transparent if its meaning is context-independent
- A language is strongly transparent if all of its expressions are

Probing Accuracy

Increasingly more probe parameters

Another Summary

LMs can learn the meaning of a strongly transparent language.

And strong transparency is important for this learnability.

But is NL strongly transparent?

Foreshadow: it makes NL not strongly transparent

Foreshadow: it makes NL not strongly transparent

[[Superman]] = [[Clark Kent]]

Foreshadow: it makes NL not strongly transparent

Foreshadow: it makes NL not strongly transparent

[Lois Lane believes Superman is a hero.]

Τ

Foreshadow: it makes NL not strongly transparent

Foreshadow: it makes NL not strongly transparent

```
[Lois Lane believes Superman is a hero.]] \neq [Lois Lane believes Clark Kent is a hero.]]

II

T
```

Foreshadow: it makes NL not strongly transparent

propositional attitude verb

 Theorem: A compositional language with referential opacity is not strongly transparent

- Theorem: A compositional language with referential opacity is not strongly transparent
- We know the meaning of strongly transparent languages is learnable

- Theorem: A compositional language with referential opacity is not strongly transparent
- We know the meaning of strongly transparent languages is learnable
- But we saw strong transparency is important for learnability

- Theorem: A compositional language with referential opacity is not strongly transparent
- We know the meaning of strongly transparent languages is learnable
- But we saw strong transparency is important for learnability
- How well do LMs learn this NL phenomenon that is not strongly transparent?

Setup

• Data: $\{(s_1, s_2, y)\}$

- Data: $\{(s_1, s_2, y)\}$
 - She wants to meet {Superman/Clark Kent}. y = Non-equivalent

- Data: $\{(s_1, s_2, y)\}$
 - She wants to meet {Superman/Clark Kent}. y = Non-equivalent
 - She managed to meet {Superman/Clark Kent}. y = Equivalent

- Data: $\{(s_1, s_2, y)\}$
 - She wants to meet {Superman/Clark Kent}. y = Non-equivalent
 - She managed to meet {Superman/Clark Kent}. y = Equivalent
- Models: pretrained GPT-2-XL, BERT-large

- Data: $\{(s_1, s_2, y)\}$
 - She wants to meet {Superman/Clark Kent}. y = Non-equivalent
 - She managed to meet {Superman/Clark Kent}. y = Equivalent
- Models: pretrained GPT-2-XL, BERT-large
- Methods: probing and similarity-based analysis

Yet Another Summary

Although LMs could learn the meaning of a strongly transparent language, they don't well-represent referential opacity and hence the meaning of the entirety of NL.

 Aligning with the theoretical guarantee, current LM architectures & objectives can learn the meaning of a strongly transparent language

- Aligning with the theoretical guarantee, current LM architectures & objectives can learn the meaning of a strongly transparent language
- Strong transparency plays a big part in this learnability

- Aligning with the theoretical guarantee, current LM architectures & objectives can learn the meaning of a strongly transparent language
- Strong transparency plays a big part in this learnability
 - Though learnability is not completely destroyed w/o strong transparency

- Aligning with the theoretical guarantee, current LM architectures & objectives can learn the meaning of a strongly transparent language
- Strong transparency plays a big part in this learnability
 - Though learnability is not completely destroyed w/o strong transparency
- On NL, there is no evidence at all of LMs representing referential opacity, a phenomenon that is not strongly transparent

 Why did we see >random probing/eval accuracy on the perturbed propositional logic, but not referential opacity?

- Why did we see >random probing/eval accuracy on the perturbed propositional logic, but not referential opacity?
 - Maybe referential opacity is just harder

- Why did we see >random probing/eval accuracy on the perturbed propositional logic, but not referential opacity?
 - Maybe referential opacity is just harder
 - Maybe it's because of the large variation in NL, with sentences that are untruthful, subjective, etc.

- Why did we see >random probing/eval accuracy on the perturbed propositional logic, but not referential opacity?
 - Maybe referential opacity is just harder
 - Maybe it's because of the large variation in NL, with sentences that are untruthful, subjective, etc.
 - Or maybe...

```
((¬T)\(\(\tau\)(¬F)\)))=(T\(\(\tau\)(\(\tau\)(\(\tau\)F)\)))))
(\(\tau\)((F\(\tau\))\))=((T\(\tau\))\)))=((T\(\tau\))\)))
(((\(\tau\)(\(\tau\))\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)((\(\tau\)(\(\tau\))\))\)(\(\tau\)(\(\tau\)(\(\tau\))\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\))\)(\(\tau\)(\(\tau\)(\(\tau\))\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\)(\(\tau\)(\(\tau\))\
```

```
 ((\neg T) \wedge (\neg (Tv(\neg F)))) = (Tv(\neg (\neg ((\neg T) \vee (\neg (\neg F)))))) \\ (\neg (\neg (((F \wedge ((F \wedge F) \wedge F)) \wedge F) \wedge (\neg T))))) = ((T \wedge T) \wedge ((\neg F) \vee (\neg F))) \\ (((\neg ((\neg (\neg (\neg (\neg (\neg T)))) \vee T)) \vee T) \wedge (\neg (\neg T)))) = ((\neg F) \vee (\neg (T \wedge (T \vee T)))) \\ ((T \wedge (F \vee F)) \vee (T \vee (F \wedge T))) = (\neg ((\neg T) \wedge (\neg ((\neg ((\neg (\neg F)) \vee F)) \vee (T \wedge T))))) \\ (((\neg (\neg F)) \wedge (\neg F)) \wedge (((\neg F) \vee F) \wedge F)) = ((F \wedge (\neg ((\neg (F \vee ((\neg (T \vee T)) \wedge (\neg (\neg (T \wedge F)))))))) \\ ((T \vee (\neg (T \wedge (T \vee (\neg (F \vee (\neg (T \vee T))))))) = (\neg (((\neg (T \vee ((\neg (T \wedge T)) \wedge (\neg (\neg F)))))))) \\ (F \wedge (F \wedge (\neg ((\neg (T \vee T)) \wedge (\neg (T \vee T)))))) = (\neg ((((\neg (T \wedge T)) \vee (\neg (F \vee F)) \vee (\neg (\neg F)))))) \\ (F \wedge (F \wedge (\neg ((F \vee F) \vee (\neg (\neg T))))))) = (\neg (((((\neg (T \wedge T)) \vee (\neg F)) \vee (\neg (\neg F))))))
```

Probing Accuracy

a=b 50.5

Probing Accuracy

-Reflexivity	+Reflexivity
a=b	a=b, a=a, b=b
50.5	92.7

```
 ((\neg T) \wedge (\neg (Tv(\neg F)))) = (Tv(\neg (\neg ((\neg T) \vee (\neg (\neg F)))))) \\ (\neg (\neg (((F \wedge ((F \wedge F) \wedge F)) \wedge F) \wedge (\neg T))))) = ((T \wedge T) \wedge ((\neg F) \vee (\neg F))) \\ (((\neg ((\neg (\neg (\neg (\neg T)))) \vee T)) \vee T) \wedge (\neg (\neg T))) = ((\neg F) \vee (\neg (T \wedge (T \vee T)))) \\ ((T \wedge (F \vee F)) \vee (T \vee (F \wedge T))) = (\neg ((\neg T) \wedge (\neg ((\neg ((\neg (\neg F)) \vee F)) \vee (T \wedge T))))) \\ (((\neg (\neg F)) \wedge (\neg F)) \wedge (((\neg F) \vee F) \wedge F)) = (F \wedge (\neg (\neg (F \vee ((\neg (F \vee (\neg T)) \wedge T))))) \\ ((T \vee (\neg (T \wedge (T \vee (\neg (F \vee (\neg F))))))))) = (\neg (((\neg (T \vee (\neg (\neg (T \wedge F))))))) \\ (F \wedge (F \wedge (\neg ((\neg (T \vee T)) \wedge (\neg T)))))) = (\neg ((((\neg (T \wedge T)) \vee (\neg F)) \vee (\neg (\neg F))))) \\ (F \wedge (F \wedge (\neg ((F \vee F) \vee (\neg (\neg T))))))) = (\neg (((((\neg (T \wedge T)) \vee (\neg F)) \vee (\neg T)) \wedge (\neg F))))
```

Probing Accuracy

	-Reflexivity	+Reflexivity
-Symmetry	a=b 50.5	a=b, a=a, b=b 92.7
+Symmetry	a=b, b=a 50.3	a=b, b=a, a=a, b=b 98.8

- Why did we see >random probing accuracy on the perturbed propositional logic, but not referential opacity?
 - Maybe referential opacity is just harder
 - Maybe it's because of the variation in NL, with sentences that are untruthful, subjective, etc.
 - Or maybe...

- Why did we see >random probing accuracy on the perturbed propositional logic, but not referential opacity?
 - Maybe referential opacity is just harder
 - Maybe it's because of the variation in NL, with sentences that are untruthful, subjective, etc.
 - Or maybe...
 - We don't have such an explicit representation of equivalence in NL pretraining

- Aligning with the theoretical guarantee, current LM architectures & objectives can learn the meaning of a strongly transparent language
- Strong transparency plays a big part in this learnability
 - Though learnability is not completely destroyed w/o strong transparency
- On NL, there is no evidence at all of LMs representing referential opacity, a phenomenon that is not strongly transparent
- Careful design of the pretraining data/setup is crucial